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Abstract—The resolution of ultrasound medical images is 
yet an important problem despite of the researchers efforts. 
In this paper we presents a nonlinear blind deconvolution to 
eliminate the blurring effect based on the measured radio-
frequency signal envelope. This algorithm is executed in two 
steps. Firslty we make an estimation for Point Spread 
Function (PSF) and, secondly we use the estimated PSF to 
remove, iteratively their effect. The proposed algorithm is a 
greedy algorithm, called also matching pursuit or CLEAN. 
The use of this algorithm is motivated beacause theorically 
it avoid the so called inverse problem, which usually needs 
regularization to obtain an optimal solution. The results are 
presented using 1D simulated signals in term of visual 
evaluation and nMSE in comparison with the two most 
kwown regularisation solution methods for least square 
problem, Thikonov regularization or l2-norm and Total 
Variation or l1 norm. 

Keywords—ultrasound, resolution improvement, nonlinear 
blind deconvolution, matching pursuit. 

I. INTRODUCTION 
Ultrasound imaging is a diagnostic method widely used 

in the clinical investigations. Despite of its safety and 
other advantages, it has a great disadvantage. The 
resolution is degraded some effects like attenuations, 
refractions, nonlinearities, frequency choose or probe 
properties. For example, the wave propagation in the 
tissues produces nonlinearities, which affect the central 
frequency of the pulse. Also, the properties of the 
piezoelectric crystal - the limited bandwidth and the pulse 
shape – produce a blurring and a rejection of high 
frequencies in final signals/images [1], [2]. 

The resolution improvement can be made in two 
directions. Firstly by improving the imaging systems, 
which generates very high prices for final products and, 
secondly using post processing signals. This second 
approach is more practical in many cases because it 
requires only a computation system and some algorithms 
and can offer interesting results. 

In ultrasound imaging, the obtained B-mode image 
supposes the interaction between the acoustic beam, 
generated by the transducer and, the scanned tissues. 
Usually, the phenomena are not linear but, for 
computations simplicity, the greatest part of the methods 
proposed in literature suppose that the acquired signal is a 

linear combination between the reflectivity function (i.e. 
the scanned environment) and the pulse. This can be 
written in mathematical formulation, as follows: 

 
 ( ) ( ) ( ) ( ).= ⊗ +y t x t h t n t   (1) 
 
where ⊗ is the convolution operator, y(t) is the measured 
signal, h(t) is the system impulse response, x(t) is 
reflectivity function and, n(t) is a Gaussian white noise. 

First studies proposed in the literature used a measured 
Point Spread Function (PSF) [3], [4]. The use of an only 
one PSF to deconvolve the entire image is not feasible 
because of the attenuations, reflections, refractions and 
other processes which change the shape of the PSF. A 
solution is to estimate the PSF from the acquired signals 
by supposing that it is slow variant in time. This follows to 
divide the image in segments were ones considers that it is 
constant and estimates a PSF for each segment. These 
methods are blind deconvolution methods and, the 
problematic of PSF estimation is made using different 
assumptions.  

An approach proposes to estimate the PSF using high 
order statistics and the problem was solved using 1D 
implementation [5]. The method offers interesting results, 
but the implementation and computation time made it very 
difficult to implement in high dimensional space. 

Taxt et al. introduced and improved a new method of 
PSF estimation using the Cepstrum and Homomorphic 
Deconvolution properties [6][7][8][9].  In this approach it 
is considered that the PSF spectrum is a function more 
smooth than the reflectivity function. The restoration was 
made supposing that the reflectivity function has a 
Gaussian distribution, so the Wiener filter was used. Also, 
the proposed procedures use the RF signals or their 
envelope. 

A new approach of PSF estimation was introduced in 
[10]. Here the PSF is estimated by supposing that 
reflectivity function has a spectrum similar to white noise 
and the authors proposed a de-noising procedure to 
eliminate it [11]. This procedure uses also the 
Homomorphic Deconvolution to separate and to eliminate 
the reflectivity function component from the acquired 
signal [12]. An outlier resistant de-noising procedure was 
proposed in the de-noising procedure [13]. The sparsity 
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Figure 1. The steps of the algorithm implementation. 

 
  

 

assumption for tissue shape was proposed in [14], a 
procedure which uses the envelope of the acquired image. 
Also, a hybrid parameterization of inverse filter with 
sparsity assumptions is proposed by O. Michailovich in 
[15].  

Other kinds of approaches were proposed in [16] or 
[17]. In [16] the authors proposed and expectation-
maximization algorithm that solved the problem 
iteratively alternating between Wiener filtering and 
wavelet-based de-noising. The PSF is considered a priori 
known. In [17], 2-steps deconvolution algorithm was 
proposed, where in first step the PSF is estimated using 
the Cepstrum technique and for deconvolution a two steps 
iterative/thresholding (TwIST) is used. 

In this paper we want to present an idea of a 
deconvolution algorithm which intends to improve the 
ultrasound signals using a greedy algorithm, similar to 
matching pursuit [18] or CLEAN algorithm in radio-
astronomy [19]. The presented algorithm use the RF 
signal envelope because is difficult to estimate the central 
frequency of PSF. This fact is due because of 
nonlinearities presented in the wave propagation in 
tissues. 

It is well known that in ultrasound imaging a part of the 
generated pulse is reflected when it find an interface 
between two tissues with different physical properties. 
Using this information, we suppose that the reflectivity 
function has a Laplace probability of density function 
(PDF) as in [10], [14], [15] or [17].  

The present paper is organized as follows: in Section I 
was made a short presentation of the field and the most 
important signal processing approaches for resolution 
improvement, Section II  presents the used methods for 
this algorithm and comparative algorithms, Section III 
describes the simulations, Section IV shows the results 
and, Section V concludes the current study. 

II. METHODS 
In the following are presented the most important 

methods used in this algorithm, as follows: Hilbert 
Transform for envelope extraction, Homomorphic 
deconvolution and soft-thresholding denoising for PSF 
estimation, and matching pursuit algorithm for nonlinear 
time domain deconvolution (Subsection II.A).  

For results evaluation was implemented Thikhonov 
regularization and Total Variation Regularization. These 
methods were presented in Subsection II.B. 

A. Proposed method 
The proposed method started from the acquired RF 

signals. Using these signals we extracted the envelope and 
afterwards, this envelope was used in two step blind 
deconvolution algorithm. The algorithm was a two steps 
algorithm because in the first step the PSF was extracted, 
and then, this PSF was used in the deconvolution 
algorithm. Figure 1 presented the diagram of the proposed 
algorithm. 

1) Hilbert transform 
In mathematics and in signal processing, the Hilbert 

transform was a linear operator which taken a 
function yRF(t), and produced a function H(yRF)(t), with 
the same domain. In signal processing, it was widely used 
to derive the analytic representation of a signal yRF

 

(t), as 
follows: 

 ( ) ( ) ( )( ).a RF RFy t y t jH y t= +   (2) 
 
where ya(t) was the analytic signal, yRF(t) was the 
original signal and, H(yRF)(t) was the Hilbert Transform 
of yRF

In the situation when the signal y
(t). 

a

 

(t) was a sinusoidal 
signal, by applying the absolute value operator we 
obtained its envelope, as follows: 

 ( ) ( ) .ay t y t=   (3) 
 
where y(t) was the signal envelope, ya

2) Point Spread Function estimation 

(t) was the same 
analytic signal and | ⋅ | was the absolute value operator. 

The main idea in the ultrasound pulse estimation was 
that it was a smooth function and a reflectivity function 
had a wide and more uniform spectrum. Using this 
assumption one can change the signals separation 
problems in a de-noising one. For this we used the 
logarithm and homomorphic deconvolution properties.  

If we applied the logarithm to the left and right 
members of the Fourier Transform of the equation (1) we 
obtained the sum of the input signals [12]: 

 
  log( ( )) log( ( )) log( ( )).ω ω ω= +Y H X   (4) 

 
where log was the natural logarithm and, Y(ω), H(ω) and 
X(ω) were the Fourier Transform for y(t), h(t) and, 
respectively, x(t). The noise parameter was removed in 
(4) for computation simplicity. Then we transformed the 
input signal into a linear operation. This could 
discriminate between the signals using the above 
presented assumptions that PSF was a much smooth 
function and the wave separation problem could be 
changed in a de-noising one. The algorithm was proposed 
in [10]. The main idea of this technique was the use of a 
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de-noising method in the frequency domain by applying a 
wavelet soft thresholding and an outlier resistant de-
noising algorithm. The threshold was calculated using the 
formula [20]: 

 
 2 log ( ).σ= eT N   (5) 

 
where N was the length of the array, loge

 

 was natural 
logarithm and, σ was the noise variance. The σ parameter 
was automatically estimated with the formula:  

 / 0.6745.σ = xM   (6) 
 

where xM  was the median absolute value of the finest 
decomposition level.  

3) Deconvolution algorithm 
The presented algorithm for deconvolution was inspired 

by the realization of the acquired ultrasound wave, i.e. the 
resulted signal was the superposition of the reflected 
pulses from human body. Using the assumption that 
reflectivity function was a sparse function (i.e. had a 
Laplace PDF) we wanted to extract iteratively, from the 
envelope of the measured signal the influence of the most 
important blurred scatter and to replace it with a Dirac 
pulse, at the same position, in a signal with all positions 
zero in the beginning. 

The algorithm was a greedy algorithm (Matching 
Pursuit or CLEAN) because it worked top-down: it made 
a locally optimal choice in hope that solving the sub-
problem, at the end, the final solution was optimal [21]. 

In our approach we considered that the locally optimal 
choice was the strongest reflector because its amplitude 
could hide the neighbor reflectors with lower amplitude.  

So, we set the locally optimal problem the iterative 
extraction of the highest blurred scatter from the residual 
signal in hope that the final result contained a highest 
possible number of scatters.    

The deconvolution algorithm was synthesized in the 

following: 
 
Here, R(t) was also called residual signal, A(ti) was the 

value of maximum amplitude at the position ti

The algorithm had also, another advantage – it was a 
time domain deconvolution. This made it to avoid the 
inverse problem in signal processing, which was well 
known as one of the difficult problems in signal 
processing. 

 and ⊗ was 
the convolution operator. The threshold was a value which 
usually was set manually. 

B. Comparative methods 
Generally, in the inverse problem the natural solution 

for resolving the system was to find the minimum solution 
for the least square criterion 

 

 2
2min{|| || }−x yH   (7) 

 
where H  was the Toeplitz matrix of the estimated 1D 
PSF and ||·||  was the Euclidian norm. The problem was 
that usually the H  matrix was not invertible and then, the 
solution was not unique. 

1) Tikhonov Regularization 
The Tikhonov Regularization (TkR) was a 

regularization method to penalize the least square 
solution for the ill posed or ill conditioned problems in 
Hadamard sense [22], [23]. Tikhonov introduced in the 
least square solution a regularization parameter to 
minimize the size of the solution. The general form was: 

 
 2 2

2min{|| || || || }.− −x y xHΓ   (8) 
 

where Γ  was the Tikhonov matrix, 2
2−x yH  was the 

residual norm and 2|| ||xΓ  was the solution norm. The 
Tikhonov matrix was usually α=Γ I  where the I  matrix 
was the unit matrix and the α  parameter was called 
regularization factor. The optimal value for α  was find 
with the L-curve method, which was a log-log 
representation between residual and solution norms [24]. 

2) Total Variation Regularization 
Total Variation was similar to (8) with the difference 

that the l2-norm was replaced by l1 [25]-norm . The 
Equation (8) became to minimize: 

 
 2

2 1min{|| || }.α− −x y xH   (9) 
 

where the parameters had the same signification and the 
l1 1 = ∑ ix x-norm was with 1,=i N  and N  the length of  
reflectivity function x. In comparison with Tikhonov 
regularization, this algorithm was not linear. To solve 
Total Variation usually was used iterative algorithms to 
find optimal solution, like Quasi-Newton methods [26]. 

III. SIMULATIONS 
For the simulations we used sparse synthetic signals 

contaminated with the Gaussian white noise to simulate 
reflectivity function. The length of the signals was 512 
points the sampling frequency was 20 MHz and the 
central transducer frequency was 3.2 MHz. This 
corresponded to sequence of 160 µs and an 

Input: signal y(t), PSF h(t). 
Output: reflectivity function ˆ( ).x t  
Initialisation: 
      x(t)←0; R0(t)←y(t) ; aux(t)←0, n←0. 
Repeat 
       - find ti and A(ti) where A(ti)←max{R(t)| ti ∈ t}; 
       - ( ) ( ) ;i ix t A t←   
       - aux(t)← A(ti); 
       - Rn+1(t)← Rn(t)-h(t)⊗aux(t); 
       - aux(t)←0; 
       - n←n+1; 
Until stop criterion (Rn(t)<threshold). 
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Figure 2. Simulated signals. Top: the generated reflectivity 

function. Middle: the generated PSF. Bottom: the resulted RF 
signal and its envelope. 

 
  

 

 
Figure 3. Top: original reflectivity function; Middle-top: results 
obtained with TkR; Middle-bottom: results obtained with TV; 

Bottom: results obtained with our algorithm. 
 

approximately 3.94 cm deep scanning (for a standard 
ultrasound velocity c = 1540 m/s). 

The synthetic RF signals were made using the circular 
convolution of the generated reflectivity function and an 
ideal PSF consisted of a sinusoidal signal with frequency 
of 3.2 MHz type multiplied by a Gaussian envelope.  

The reflectivity function was realized by a random 
generated sparse signal which added a Gaussian noise 
corresponding to different SNR noises. With this noise 
we intended to simulate different types of tissues. For 
example, we find more speckle noise and weak scatters in 
the soft tissues, like abdominal tissues. 

In the Figure 2 was presented the generation of 
simulated RF signals. The result was made following the 
equation (1), i.e. the convolution between the reflectivity 
function and the PSF.  

The simulations were performed in MATLAB, using a 
PC with Intel i5 processor and 4 GB of RAM. 

 The sparse signals and the noise have been generated 
randomly with the sprandn and randn functions. 

 For wavelet decomposition and de-noising we used 
Wavelab Toolbox, downloaded from http://www-
stat.stanford.edu /~wavelab/. 

To test the proposed algorithm, we got the RF signal, 
we obtained its envelope using the Hilbert transform. 
From the envelope we estimated the PSF using the 
procedure presented in Section II.A.2). At the end, we 
used the PSF to reconstruct the reflectivity function with 
different approaches. 

IV. RESULTS AND DISCUTIONS 
 The results were focused to evaluate the ability of the 

proposed algorithm to reconstruct the reflectivity function 
starting from the acquired RF signal envelope. The results 
were compared with two important state of the art 

techniques in signal processing: Tikhonov regularization 
and Total Variation. 

These were presented in terms of visual and 
quantitative evaluation. For quantitative we measured the 
execution time for each method and we computed the 
normalized Mean Square Error (nMSE). The nMSE is 
defined as follows: 

 

 
2
2

2
2

ˆ − =
 
 

x x
nMSE E

x
  (10) 

 
where E is the statistical expectation, x is the original 
reflectivity function, x̂  is the resulted reflectivity function 
and ⋅  is the l2

Figure 3

-norm. 

 presented the simulation results in terms of 
visual evaluation. We can see that our algorithm 
overcome the dynamic algorithms. In the top was 
presented the original reflectivity function, which we 
wanted to extract. Then, the results of with Tikhonov 
regularization had many oscillations, which was normal 
because Tikhonov regularization is usually used when the 
resulted signal has a Gaussian distribution. The second 
used algorithm (TV) offered a sparse solution which is 
more similar to the desired signal, but not enough. 

In the Table I we presented the quantitative evaluations 
for the presented methods. In terms of nMSE we 
observed that the results confirmed the above presented 
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visual results. Our algorithm had also, good results in 
execution time. Algorithm speed offered an expected 
result compared with the TV because TV is nonlinear and 
it used an iterative Newton algorithm, but compared with 
TkR is surprisingly because it is solved without iterative 
procedures. 

V. CONCLUSIONS AND FUTURE WORK 
 This paper presented a “greedy” blind blind 

deconvolution algorithm which intended to extract the 
reflectivity function from the envelope of acquired RF 
signals.  

Using simulated signals, the method presented better 
results in term of visual and quantitative evaluation 
(nMSE). Also, the method was faster than classical 
dynamic programming algorithms. 

Like future work, we want to test the proposed 
algorithm onto real ultrasound images in booth 1D and 2D 
implementation. 
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TABLE I.   
QUANTITATIVE EVALUATION FOR TESTED ALGORITHMS 

Evaluation Parameter TkR TV Our. Alg. 

Time[s] 0.1664 13.6232 0.0652 

nMSE 4.0180 3.3083 0.7399 
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